Counting Points on Curves of the Form $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$

> Matthew Hase-Liu Mentor: Nicholas Triantafillou

Sixth Annual Primes Conference

21 May 2016

Definition

A plane algebraic curve is defined as the set of points in a plane consisting of the zeroes of some polynomial in two variables.

Definition

A plane algebraic curve is defined as the set of points in a plane consisting of the zeroes of some polynomial in two variables.

х

Example $x^{2} + y^{2} = 1$ over \mathbb{R}^{2} :

Consider points with integer coordinates modulo a prime.

Consider points with integer coordinates modulo a prime.

Definition

 \mathbb{F}_p is the set of elements that consist of the integers modulo a prime p.

Remark

If you know what a field is, we are looking at plane algebraic curves over the finite field $\mathbb{F}_p.$

Consider points with integer coordinates modulo a prime.

Definition

 \mathbb{F}_p is the set of elements that consist of the integers modulo a prime p.

Remark

If you know what a field is, we are looking at plane algebraic curves over the finite field $\mathbb{F}_p.$

Definition

Given a curve C, define $C(\mathbb{F}_p)$ as the points that satisfy C(x, y) = 0, along with points at infinity.

- Well-known curves
 - Elliptic curves: $y^2 = x^3 + ax + b$
 - Hyperelliptic curves: $y^2 = f(x)$, where deg (f) > 4
 - Superelliptic curves: $y^m = f(x)$

- Well-known curves
 - Elliptic curves: $y^2 = x^3 + ax + b$
 - Hyperelliptic curves: $y^2 = f(x)$, where deg(f) > 4
 - Superelliptic curves: $y^m = f(x)$

• Curve of interest: $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$ (trinomial curve)

- Well-known curves
 - Elliptic curves: $y^2 = x^3 + ax + b$
 - Hyperelliptic curves: $y^2 = f(x)$, where deg(f) > 4
 - Superelliptic curves: $y^m = f(x)$

• Curve of interest: $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$ (trinomial curve)

Main Problem What is $\#C(\mathbb{F}_p)$?

Main Problem What is $\#C(\mathbb{F}_p)$?

Theorem (Hasse-Weil bound) Let C be the curve of interest: $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$. Then, $|\#C(\mathbb{F}_p) - p - 1| \le 2g\sqrt{p}$,

where g is some polynomial function of m_1 , m_2 , n_1 , and n_2 .

Main Problem What is $\#C(\mathbb{F}_p)$?

Theorem (Hasse-Weil bound) Let C be the curve of interest: $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$. Then, $|\#C(\mathbb{F}_p) - p - 1| \le 2g\sqrt{p}$,

where g is some polynomial function of m_1 , m_2 , n_1 , and n_2 .

Idea

If p is large, then all we need is $\#C(\mathbb{F}_p) \pmod{p}$.

Main Problem What is $\#C(\mathbb{F}_p)$?

- ▶ Naïve approach: try all values of $(x, y) \in \mathbb{F}_p^2$ (very slow)
- ▶ Better approach: find #C(𝔽_p) (mod p) and use Hasse-Weil bound (much faster)

Hasse-Witt Matrix

Definition (informal)

Define $H^1(C, \mathcal{O}_C)$ as the set of bivariate polynomials made from combining certain monomials modulo the equation of the curve.

Definition (informal)

Define $H^1(C, \mathcal{O}_C)$ as the set of bivariate polynomials made from combining certain monomials modulo the equation of the curve.

Definition

The Hasse-Witt matrix of a curve *C* is defined as the matrix corresponding to the *p*th power mapping on the vector space $H^1(C, \mathcal{O}_C)$.

Hasse-Witt Matrix

Theorem

If A is the Hasse-Witt matrix of some curve C over some field \mathbb{F}_{p} ,

$$\#C(\mathbb{F}_p)\equiv 1-\mathrm{tr}(A) \pmod{p}.$$

Remark

If p is large, we only need to find $tr(A) \pmod{p}$.

Hasse-Witt Matrix

Example

Hasse-Witt matrix of $y^3 = x^6 + 1$ over \mathbb{F}_7 is

$$\left(\begin{array}{cccc} \binom{4}{1} & 0 & 0 & 0\\ 0 & \binom{2}{1} & 0 & 0\\ 0 & 0 & \binom{4}{2} & 0\\ 0 & 0 & 0 & \binom{4}{3} \end{array}\right).$$

$$\#C\left(\mathbb{F}_{7}\right) \equiv 1 - \left(\binom{4}{1} + \binom{2}{1} + \binom{4}{2} + \binom{4}{3}\right) \pmod{7}$$
$$\equiv 6 \pmod{7}.$$

Definition

Let C be a curve of the form $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$. Define S(C) to be the set of lattice points (i, j) such that $i(m_1 - m_2) + jn_2 < 0$, $im_1 + jn_1 > 0$, $1 \le j \le m_1 - 1$, and $i \le -1$.

Remark

(i, j) corresponds to $x^i y^j \in H^1(C, \mathcal{O}_C)$. The monomials corresponding to points in S(C) give us a basis for $H^1(C, \mathcal{O}_C)$.

Example S(C) for $C: y^3 - x^4 - x = 0$ $x^{-2}y_{\perp}^{2}$ $x^{-1}u$ $x^{+1}u$

Remark

(i, j) corresponds to $x^i y^j \in H^1(C, \mathcal{O}_C)$. The monomials corresponding to points in S(C) give us a basis for $H^1(C, \mathcal{O}_C)$.

Redefinition

If $x^{pi}y^{pj} = \ldots + a_{u,v}x^uy^v + \ldots$, the entry of the Hasse-Witt matrix in the *i*, *j* column and *u*, *v* row is $a_{u,v}$.

Redefinition

If $x^{pi}y^{pj} = \ldots + a_{u,v}x^{u}y^{v} + \ldots$, the entry of the Hasse-Witt matrix in the *i*, *j* column and *u*, *v* row is $a_{u,v}$.

Example $C \cdot v^3 - v^4 + v$ where n = 10

C
$$y = x + x$$
, where $p = 19$

• $S(C) = \{(-1,1), (-1,2), (-2,2)\}$

Redefinition

If $x^{pi}y^{pj} = \ldots + a_{u,v}x^{u}y^{v} + \ldots$, the entry of the Hasse-Witt matrix in the *i*, *j* column and *u*, *v* row is $a_{u,v}$.

Example *C* : $v^3 = x^4 + x$, where p = 19• $S(C) = \{(-1,1), (-1,2), (-2,2)\}$ ▶ For (-1, 1) : $x^{-19}y^{19} = x^{-19}y^{16}y^3 = x^{-19}y^{16}(x^4 + x)$ $= x^{-15} v^{16} + x^{-18} v^{16}$ $= x^{-11}v^{13} + 2x^{-14}v^{13} + x^{-17}v^{13}$ $=\ldots+15x^{-1}y+\ldots$

Example

C :
$$y^3 = x^4 + x$$
, where $p = 19$
► For (-1, 1) :
 $x^{-19}y^{19} = x^{-19}y^{16}y^3 = x^{-19}y^{16}(x^4 + x)$
 $= x^{-15}y^{16} + x^{-18}y^{16}$
 $= x^{-11}y^{13} + 2x^{-14}y^{13} + x^{-17}y^{13}$

Recall that the curve of interest is $C: y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$.

Recall that the curve of interest is $C: y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$.

Question

How many paths are there from (pi, pj) to (u, v) if only steps of $\langle n_1, -m_1 \rangle$ and $\langle n_2, m_2 - m_1 \rangle$ are allowed?

Recall that the curve of interest is $C: y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$.

Question

How many paths are there from (pi, pj) to (u, v) if only steps of $\langle n_1, -m_1 \rangle$ and $\langle n_2, m_2 - m_1 \rangle$ are allowed?

Answer

Assume there are k_1 of $\langle n_1, -m_1 \rangle$ and k_2 of $\langle n_2, m_2 - m_1 \rangle$. Then, the number of paths is $\binom{k_1 + k_2}{k_1}$, where $k_1 = \frac{(m_1 - m_2)(pi - u) - n_2(pj - v)}{m_1 n_1 - m_1 n_2 - m_2 n_1}$ and $k_2 = \frac{n_1(pj - v) - m_1(pi - u)}{m_1 n_1 - m_1 n_2 - m_2 n_1}$.

Example

Diagonal entries of the Hasse-Witt matrix correspond to paths from (pi, pj) to (i, j).

Diagonal entries of the Hasse-Witt matrix correspond to paths from (pi, pj) to (i, j).

Theorem (Hase-Liu)

If C is the curve $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$,

$$\#C(\mathbb{F}_p) \equiv 1 - \sum_{(i,j)\in S(C)} \binom{k_1 + k_2}{k_1} c_1^{k_1} c_2^{k_2} \pmod{p},$$

where $k_1 = \frac{(p-1)(i(m_2-m_1)-jn_2)}{m_1n_1-m_1n_2-m_2n_1}$ and $k_2 = \frac{(p-1)(jn_1+im_1)}{m_1n_1-m_1n_2-m_2n_1}$.

Summary

Steps to computing $\#C(\mathbb{F}_p)$: Find S(C)

Steps to computing $\#C(\mathbb{F}_p)$:

- ► Find *S*(*C*)
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from (pi, pj) to (i, j)

Steps to computing $\#C(\mathbb{F}_p)$:

- ► Find *S*(*C*)
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from (pi, pj) to (i, j)
- Use fact that $\#C(\mathbb{F}_p) \equiv 1 \operatorname{tr}(A) \pmod{p}$

Steps to computing $\#C(\mathbb{F}_p)$:

- ► Find *S*(*C*)
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from (pi, pj) to (i, j)
- Use fact that $\#C(\mathbb{F}_p) \equiv 1 \operatorname{tr}(A) \pmod{p}$
- Finish with Hasse-Weil bound

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

 \blacktriangleright Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$

Example S(C) for $C: y^3 - x^4 - x = 0$

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

 \blacktriangleright Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$

•
$$S(C) = \{(-1,1), (-1,2), (-2,2)\}$$

Example

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

- $S(C) = \{(-1,1), (-1,2), (-2,2)\}$
- \blacktriangleright Allowed steps: $\langle 4, -3 \rangle$ and $\langle 1, -3 \rangle$
- Number of paths from (-19, 19) to (-1, 1): $\begin{pmatrix} 6\\4 \end{pmatrix}$
- Number of paths from (-19, 38) to (-1, 2): $\binom{12}{2}$

Number of paths from (-38, 38) to (-2, 2): $\begin{pmatrix} 12\\8 \end{pmatrix}$

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

- $S(C) = \{(-1,1), (-1,2), (-2,2)\}$
- \blacktriangleright Allowed steps: $\langle 4, -3 \rangle$ and $\langle 1, -3 \rangle$
- Number of paths from (-19, 19) to (-1, 1): $\begin{pmatrix} 6\\4 \end{pmatrix}$
- Number of paths from (-19, 38) to (-1, 2): $\binom{12}{2}$

Number of paths from (-38, 38) to (-2, 2): $\begin{pmatrix} 12\\8 \end{pmatrix}$

•
$$\#C(\mathbb{F}_p) \equiv 1 - \left(\begin{pmatrix} 6\\4 \end{pmatrix} + \begin{pmatrix} 12\\2 \end{pmatrix} + \begin{pmatrix} 12\\8 \end{pmatrix} \right) \equiv 14 \pmod{19}$$

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

- To check, use brute force to find number of points directly
- ▶ $(x, y) \in \mathbb{F}_{19}^2$ such that $y^3 x^4 x = 0$: (0,0), (2,8), (2,12), (2,18), (3,2), (3,3), (3,14), (8,0), (12,0), (14,10), (14,13), (14,15), (18,0) (13 points)

Example

$$C: y^3 - x^4 - x = 0$$
, where $p = 19$

- To check, use brute force to find number of points directly
- ▶ $(x, y) \in \mathbb{F}_{19}^2$ such that $y^3 x^4 x = 0$: (0,0), (2,8), (2,12), (2,18), (3,2), (3,3), (3,14), (8,0), (12,0), (14,10), (14,13), (14,15), (18,0) (13 points)
- Must include point at infinity, for a total of 14 points (with multiplicity)

Time Complexity

Definition

Let $M(n) = O(n \log n \log \log n)$ be the time needed to multiply two *n*-digit numbers.

Time Complexity

Definition

Let $M(n) = O(n \log n \log \log n)$ be the time needed to multiply two *n*-digit numbers.

Theorem (Fite and Sutherland)

For the curves $y^2 = x^8 + c$ and $y^2 = x^7 - cx$, $\#C(\mathbb{F}_p)$ can be computed (for certain values of m such that $p \equiv 1 \pmod{m}$):

- Probabilistically in $O(M(\log p) \log p)$
- Deterministically in O (M (log p) log² p log log p), assuming generalized Riemann hypothesis
- Deterministically in $O(M(\log^3 p) \log^2 p / \log \log p)$

Time Complexity

Definition

Let $M(n) = O(n \log n \log \log n)$ be the time needed to multiply two *n*-digit numbers.

Theorem (Fite and Sutherland)

For the curves $y^2 = x^8 + c$ and $y^2 = x^7 - cx$, $\#C(\mathbb{F}_p)$ can be computed (for certain values of m such that $p \equiv 1 \pmod{m}$):

- Probabilistically in $O(M(\log p) \log p)$
- Deterministically in O (M (log p) log² p log log p), assuming generalized Riemann hypothesis
- Deterministically in $O(M(\log^3 p) \log^2 p / \log \log p)$

Theorem

The theorem above also holds for curves of the form $y^{m_1} = c_1 x^{n_1} + c_2 x^{n_2} y^{m_2}$.

Future Work

- Extending approach to more curves
- Working over different fields
- Computing $\#J_C(\mathbb{F}_p)$
- Applications to cryptography

Acknowledgments

Thanks to:

- Nicholas Triantafillou, my mentor, for patiently working with me every week and providing valuable advice
- > Dr. Andrew Sutherland, for suggesting this project
- Dr. Tanya Khovanova, for her valuable suggestions
- The PRIMES program, for providing me with this opportunity
- My parents, for continually supporting me