Counting Points on Curves of the Form
 $$
y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}
$$

Matthew Hase-Liu
Mentor: Nicholas Triantafillou

Sixth Annual Primes Conference

21 May 2016

Curves

Definition

A plane algebraic curve is defined as the set of points in a plane consisting of the zeroes of some polynomial in two variables.

Curves

Definition

A plane algebraic curve is defined as the set of points in a plane consisting of the zeroes of some polynomial in two variables.

Example
$x^{2}+y^{2}=1$ over $\mathbb{R}^{2}:$

Curves

Consider points with integer coordinates modulo a prime.

Curves

Consider points with integer coordinates modulo a prime.
Definition
\mathbb{F}_{p} is the set of elements that consist of the integers modulo a prime p.

Remark
If you know what a field is, we are looking at plane algebraic curves over the finite field \mathbb{F}_{p}.

Curves

Consider points with integer coordinates modulo a prime.

Definition

\mathbb{F}_{p} is the set of elements that consist of the integers modulo a prime p.

Remark
If you know what a field is, we are looking at plane algebraic curves over the finite field \mathbb{F}_{p}.

Definition

Given a curve C, define $C\left(\mathbb{F}_{p}\right)$ as the points that satisfy $C(x, y)=0$, along with points at infinity.

Curves

- Well-known curves
- Elliptic curves: $y^{2}=x^{3}+a x+b$
- Hyperelliptic curves: $y^{2}=f(x)$, where $\operatorname{deg}(f)>4$
- Superelliptic curves: $y^{m}=f(x)$

Curves

- Well-known curves
- Elliptic curves: $y^{2}=x^{3}+a x+b$
- Hyperelliptic curves: $y^{2}=f(x)$, where $\operatorname{deg}(f)>4$
- Superelliptic curves: $y^{m}=f(x)$
- Curve of interest: $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$ (trinomial curve)

Curves

- Well-known curves
- Elliptic curves: $y^{2}=x^{3}+a x+b$
- Hyperelliptic curves: $y^{2}=f(x)$, where $\operatorname{deg}(f)>4$
- Superelliptic curves: $y^{m}=f(x)$
- Curve of interest: $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$ (trinomial curve)

$y^{2}=x^{5}+5$
$y^{2}=x^{3}+2 x+3\left(\mathbb{F}_{263}\right) \quad y^{2}=x^{3}+2 x+3\left(\mathbb{F}_{2089}\right)$

Main Problem

Main Problem
What is $\# C\left(\mathbb{F}_{p}\right)$?

Main Problem

Main Problem
What is $\# C\left(\mathbb{F}_{p}\right)$?

Theorem (Hasse-Weil bound)
Let C be the curve of interest: $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$. Then,

$$
\left|\# C\left(\mathbb{F}_{p}\right)-p-1\right| \leq 2 g \sqrt{p},
$$

where g is some polynomial function of m_{1}, m_{2}, n_{1}, and n_{2}.

Main Problem

Main Problem
What is $\# C\left(\mathbb{F}_{p}\right)$?

Theorem (Hasse-Weil bound)
Let C be the curve of interest: $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$. Then,

$$
\left|\# C\left(\mathbb{F}_{p}\right)-p-1\right| \leq 2 g \sqrt{p},
$$

where g is some polynomial function of m_{1}, m_{2}, n_{1}, and n_{2}.
Idea
If p is large, then all we need is $\# C\left(\mathbb{F}_{p}\right)(\bmod p)$.

Main Problem

Main Problem
What is $\# C\left(\mathbb{F}_{p}\right)$?

- Naïve approach: try all values of $(x, y) \in \mathbb{F}_{p}^{2}$ (very slow)
- Better approach: find $\# C\left(\mathbb{F}_{p}\right)(\bmod p)$ and use Hasse-Weil bound (much faster)

Hasse-Witt Matrix

Definition (informal)

Define $H^{1}\left(C, O_{C}\right)$ as the set of bivariate polynomials made from combining certain monomials modulo the equation of the curve.

Hasse-Witt Matrix

Definition (informal)

Define $H^{1}\left(C, O_{C}\right)$ as the set of bivariate polynomials made from combining certain monomials modulo the equation of the curve.

Definition

The Hasse-Witt matrix of a curve C is defined as the matrix corresponding to the p th power mapping on the vector space $H^{1}\left(C, \mathcal{O}_{C}\right)$.

Hasse-Witt Matrix

Theorem
If A is the Hasse-Witt matrix of some curve C over some field \mathbb{F}_{p},

$$
\# C\left(\mathbb{F}_{p}\right) \equiv 1-\operatorname{tr}(A)(\bmod p)
$$

Remark
If p is large, we only need to find $\operatorname{tr}(A)(\bmod p)$.

Hasse-Witt Matrix

Example

Hasse-Witt matrix of $y^{3}=x^{6}+1$ over \mathbb{F}_{7} is

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\binom{4}{1} & 0 & 0 & 0 \\
0 & \binom{2}{1} & 0 & 0 \\
0 & 0 & \binom{4}{2} & 0 \\
0 & 0 & 0 & \binom{4}{3}
\end{array}\right) \\
\# C\left(\mathbb{F}_{7}\right) & \equiv 1-\left(\binom{4}{1}+\binom{2}{1}+\binom{4}{2}+\binom{4}{3}\right)(\bmod 7) \\
& \equiv 6(\bmod 7) .
\end{aligned}
$$

Counting Paths Instead of Points

Definition

Let C be a curve of the form $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$. Define $S(C)$ to be the set of lattice points (i, j) such that $i\left(m_{1}-m_{2}\right)+j n_{2}<0, i m_{1}+j n_{1}>0,1 \leq j \leq m_{1}-1$, and $i \leq-1$.

Remark

(i, j) corresponds to $x^{i} y^{j} \in H^{1}\left(C, \mathcal{O}_{C}\right)$. The monomials corresponding to points in $S(C)$ give us a basis for $H^{1}\left(C, \mathcal{O}_{C}\right)$.

Counting Paths Instead of Points

Example $S(C)$ for $C: y^{3}-x^{4}-x=0$

Remark
(i, j) corresponds to $x^{i} y^{j} \in H^{1}\left(C, \mathcal{O}_{C}\right)$. The monomials corresponding to points in $S(C)$ give us a basis for $H^{1}\left(C, \mathcal{O}_{C}\right)$.

Counting Paths Instead of Points

Redefinition
If $x^{p i} y^{p j}=\ldots+a_{u, v} x^{u} y^{v}+\ldots$, the entry of the Hasse-Witt matrix in the i, j column and u, v row is $a_{u, v}$.

Counting Paths Instead of Points

Redefinition

If $x^{p i} y^{p j}=\ldots+a_{u, v} x^{u} y^{v}+\ldots$, the entry of the Hasse-Witt matrix in the i, j column and u, v row is $a_{u, v}$.

Example
$C: y^{3}=x^{4}+x$, where $p=19$

- $S(C)=\{(-1,1),(-1,2),(-2,2)\}$

Counting Paths Instead of Points

Redefinition

If $x^{p i} y^{p j}=\ldots+a_{u, v} x^{u} y^{v}+\ldots$, the entry of the Hasse-Witt matrix in the i, j column and u, v row is $a_{u, v}$.

Example
$C: y^{3}=x^{4}+x$, where $p=19$

- $S(C)=\{(-1,1),(-1,2),(-2,2)\}$
- For $(-1,1)$:

$$
\begin{aligned}
x^{-19} y^{19}=x^{-19} y^{16} y^{3} & =x^{-19} y^{16}\left(x^{4}+x\right) \\
& =x^{-15} y^{16}+x^{-18} y^{16} \\
& =x^{-11} y^{13}+2 x^{-14} y^{13}+x^{-17} y^{13}
\end{aligned}
$$

$$
=\ldots+15 x^{-1} y+\ldots
$$

Counting Paths Instead of Points

Example
$C: y^{3}=x^{4}+x$, where $p=19$

- For $(-1,1)$:

$$
\begin{aligned}
x^{-19} y^{19}=x^{-19} y^{16} y^{3} & =x^{-19} y^{16}\left(x^{4}+x\right) \\
& =x^{-15} y^{16}+x^{-18} y^{16} \\
& =x^{-11} y^{13}+2 x^{-14} y^{13}+x^{-17} y^{13}
\end{aligned}
$$

Counting Paths Instead of Points

Recall that the curve of interest is $C: y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$.

Counting Paths Instead of Points

Recall that the curve of interest is $C: y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$.
Question
How many paths are there from ($p i, p j$) to (u, v) if only steps of $\left\langle n_{1},-m_{1}\right\rangle$ and $\left\langle n_{2}, m_{2}-m_{1}\right\rangle$ are allowed?

Counting Paths Instead of Points

Recall that the curve of interest is $C: y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$.
Question
How many paths are there from ($p i, p j$) to (u, v) if only steps of $\left\langle n_{1},-m_{1}\right\rangle$ and $\left\langle n_{2}, m_{2}-m_{1}\right\rangle$ are allowed?

Answer

Assume there are k_{1} of $\left\langle n_{1},-m_{1}\right\rangle$ and k_{2} of $\left\langle n_{2}, m_{2}-m_{1}\right\rangle$. Then, the number of paths is $\binom{k_{1}+k_{2}}{k_{1}}$, where
$k_{1}=\frac{\left(m_{1}-m_{2}\right)(p i-u)-n_{2}(p j-v)}{m_{1} n_{1}-m_{1} n_{2}-m_{2} n_{1}}$ and $k_{2}=\frac{n_{1}(p j-v)-m_{1}(p i-u)}{m_{1} n_{1}-m_{1} n_{2}-m_{2} n_{1}}$.

Counting Paths Instead of Points

Example

Number of paths from $(-19,19)$ to $(-1,1)$ using $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$.

Requires four of $\langle 4,-3\rangle$ and two of $\langle 1,-3\rangle$, so number of paths is $\binom{6}{4}=15$.

Number of Points Modulo p

Diagonal entries of the Hasse-Witt matrix correspond to paths from ($p i, p j$) to (i, j).

Number of Points Modulo p

Diagonal entries of the Hasse-Witt matrix correspond to paths from ($p i, p j$) to (i, j).
Theorem (Hase-Liu)
If C is the curve $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$,

$$
\# C\left(\mathbb{F}_{p}\right) \equiv 1-\sum_{(i, j) \in S(C)}\binom{k_{1}+k_{2}}{k_{1}} c_{1}^{k_{1}} c_{2}^{k_{2}}(\bmod p),
$$

where $k_{1}=\frac{(p-1)\left(i\left(m_{2}-m_{1}\right)-j n_{2}\right)}{m_{1} n_{1}-m_{1} n_{2}-m_{2} n_{1}}$ and $k_{2}=\frac{(p-1)\left(j n_{1}+i m_{1}\right)}{m_{1} n_{1}-m_{1} n_{2}-m_{2} n_{1}}$.

Summary

Steps to computing $\# C\left(\mathbb{F}_{p}\right)$:

- Find $S(C)$

Summary

Steps to computing \#C $\left(\mathbb{F}_{p}\right)$:

- Find $S(C)$
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from $(p i, p j)$ to (i, j)

Summary

Steps to computing \#C $\left(\mathbb{F}_{p}\right)$:

- Find $S(C)$
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from $(p i, p j)$ to (i, j)
- Use fact that $\# C\left(\mathbb{F}_{p}\right) \equiv 1-\operatorname{tr}(A)(\bmod p)$

Summary

Steps to computing \#C $\left(\mathbb{F}_{p}\right)$:

- Find $S(C)$
- Compute diagonal entries of Hasse-Witt matrix by finding number of paths from $(p i, p j)$ to (i, j)
- Use fact that $\# C\left(\mathbb{F}_{p}\right) \equiv 1-\operatorname{tr}(A)(\bmod p)$
- Finish with Hasse-Weil bound

Demo

Example
$C: y^{3}-x^{4}-x=0$, where $p=19$

- Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$

Demo

Example
$S(C)$ for $C: y^{3}-x^{4}-x=0$

Demo

Example

$C: y^{3}-x^{4}-x=0$, where $p=19$

- Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$
- $S(C)=\{(-1,1),(-1,2),(-2,2)\}$

Demo

Example

Number of paths from $(-19,19)$ to $(-1,1)$ using $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$.

Requires four of $\langle 4,-3\rangle$ and two of $\langle 1,-3\rangle$, so number of paths is $\binom{6}{4}=15$.

Demo

Example

$C: y^{3}-x^{4}-x=0$, where $p=19$

- $S(C)=\{(-1,1),(-1,2),(-2,2)\}$
- Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$
- Number of paths from $(-19,19)$ to $(-1,1):\binom{6}{4}$
- Number of paths from $(-19,38)$ to $(-1,2)$: $\binom{12}{2}$
- Number of paths from $(-38,38)$ to $(-2,2)$: $\binom{12}{8}$

Demo

Example

$C: y^{3}-x^{4}-x=0$, where $p=19$

- $S(C)=\{(-1,1),(-1,2),(-2,2)\}$
- Allowed steps: $\langle 4,-3\rangle$ and $\langle 1,-3\rangle$
- Number of paths from $(-19,19)$ to $(-1,1):\binom{6}{4}$
- Number of paths from $(-19,38)$ to $(-1,2)$: $\binom{12}{2}$
- Number of paths from $(-38,38)$ to $(-2,2)$: $\binom{12}{8}$
- $\# C\left(\mathbb{F}_{p}\right) \equiv 1-\left(\binom{6}{4}+\binom{12}{2}+\binom{12}{8}\right) \equiv 14(\bmod 19)$

Demo

Example

$C: y^{3}-x^{4}-x=0$, where $p=19$

- To check, use brute force to find number of points directly
- $(x, y) \in \mathbb{F}_{19}^{2}$ such that $y^{3}-x^{4}-x=0$: $(0,0),(2,8),(2,12),(2,18),(3,2),(3,3),(3,14),(8,0),(12,0)$, $(14,10),(14,13),(14,15),(18,0)(13$ points $)$

Demo

Example

$C: y^{3}-x^{4}-x=0$, where $p=19$

- To check, use brute force to find number of points directly
- $(x, y) \in \mathbb{F}_{19}^{2}$ such that $y^{3}-x^{4}-x=0$: $(0,0),(2,8),(2,12),(2,18),(3,2),(3,3),(3,14),(8,0),(12,0)$, $(14,10),(14,13),(14,15),(18,0)(13$ points $)$
- Must include point at infinity, for a total of 14 points (with multiplicity)

Time Complexity

Definition

Let $M(n)=O(n \log n \log \log n)$ be the time needed to multiply two n-digit numbers.

Time Complexity

Definition

Let $M(n)=O(n \log n \log \log n)$ be the time needed to multiply two n-digit numbers.

Theorem (Fite and Sutherland)
For the curves $y^{2}=x^{8}+c$ and $y^{2}=x^{7}-c x, \# C\left(\mathbb{F}_{p}\right)$ can be computed (for certain values of m such that $p \equiv 1(\bmod m))$:

- Probabilistically in $O(M(\log p) \log p)$
- Deterministically in $O\left(M(\log p) \log ^{2} p \log \log p\right)$, assuming generalized Riemann hypothesis
- Deterministically in $O\left(M\left(\log ^{3} p\right) \log ^{2} p / \log \log p\right)$

Time Complexity

Definition

Let $M(n)=O(n \log n \log \log n)$ be the time needed to multiply two n-digit numbers.

Theorem (Fite and Sutherland)

For the curves $y^{2}=x^{8}+c$ and $y^{2}=x^{7}-c x, \# C\left(\mathbb{F}_{p}\right)$ can be computed (for certain values of m such that $p \equiv 1(\bmod m)$):

- Probabilistically in $O(M(\log p) \log p)$
- Deterministically in $O\left(M(\log p) \log ^{2} p \log \log p\right)$, assuming generalized Riemann hypothesis
- Deterministically in $O\left(M\left(\log ^{3} p\right) \log ^{2} p / \log \log p\right)$

Theorem

The theorem above also holds for curves of the form $y^{m_{1}}=c_{1} x^{n_{1}}+c_{2} x^{n_{2}} y^{m_{2}}$.

Future Work

- Extending approach to more curves
- Working over different fields
- Computing $\# J_{C}\left(\mathbb{F}_{p}\right)$
- Applications to cryptography

Acknowledgments

Thanks to:

- Nicholas Triantafillou, my mentor, for patiently working with me every week and providing valuable advice
- Dr. Andrew Sutherland, for suggesting this project
- Dr. Tanya Khovanova, for her valuable suggestions
- The PRIMES program, for providing me with this opportunity
- My parents, for continually supporting me

